Note

Even Edge Colorings of a Graph

NOGA ALON

Department of Mathematics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139

AND

Yoshimi Egawa

Department of Applied Mathematics, Science University of Tokyo, Shinjuku-ku, Tokyo, 162 Japan

Communicated by the Managing Editors

Received April 30, 1984

It is shown that the minimum number of colors needed to paint the edges of a graph G so that in every cycle of G there is a nonzero even number of edges of at least one color is $\lceil \log_2 \chi(G) \rceil$. (C) 1985 Academic Press, Inc.

For a simple graph G, let $\varepsilon(G)$ denote the minimum number l for which there exists a partition of E(G) into l subsets E_i , $1 \le i \le l$, satisfying

> for any cycle Z of G, $0 < |E(Z) \cap E_i| \equiv 0 \pmod{2}$ for at least one E_i . (1)

The number obtained by replacing the condition (1) by

each
$$\langle E_i \rangle$$
 is bipartite (2)

is denoted by $\varepsilon'(G)$. Acharya [1] conjectured that for any integer $n \ge 0$, $\varepsilon(K_m) = n$ for all values of m with $2^{n-1} + 1 \le m \le 2^n$. In this note, we show

PROPOSITION. If G is a graph with $2^{n-1} + 1 \leq \chi(G) \leq 2^n$, then $\varepsilon(G) = \varepsilon'(G) = n$, where $\chi(G)$ denotes the chromatic number of G.

ALON AND EGAWA

Proof. Let $E(G) = \bigcup_{i=1}^{l} E_i$ be a partition satisfying (2), and let $V(G) = V_{i1} \cup V_{i2}$ be a bipartition of $\langle E_i \rangle$. Then the partition of V(G) into the $V_{1\lambda_1} \cap \cdots \cap V_{l\lambda_l}$, where $(\lambda_1, ..., \lambda_l)$ ranges over $\{1, 2\}^l$ yields a proper coloring. Thus $\varepsilon'(G) \ge n$.

Now let $V(G) = \bigcup_{\lambda \in \{1,2\}^n} V_{\lambda}$ be a partition of V(G) into independent subsets. Set

$$E_i = \{e \in E(G) \mid e \text{ joins vertices of } V_{\lambda} \text{ and } V_{\mu}$$

with $i = \min\{k \mid pr_k(\lambda) \neq pr_k(\mu)\}\}, \quad 1 \leq i \leq n.$

Then for each cycle Z, $0 < |E(Z) \cap E_{j(Z)}| \equiv 0 \pmod{2}$, where $j(Z) = \min\{i \mid E(Z) \cap E_i \neq \phi\}$. Thus $\varepsilon(G) \leq n$. Since it is clear that $\varepsilon(G) \geq \varepsilon'(G)$, this proves the proposition.

REFERENCE

1. B. D. ACHARYA, Even edge coloring of a graph, J. Combin. Theory Ser. B 35 (1983), 78-79.