Note

Even Edge Colorings of a Graph

Noga Alon
Department of Mathematics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
AND
Yoshimi Egawa
Department of Applied Mathematics, Science University of Tokyo, Shinjuku-ku, Tokyo, 162 Japan
Communicated by the Managing Editors
Received April 30, 1984

Abstract

It is shown that the minimum number of colors needed to paint the edges of a graph G so that in every cycle of G there is a nonzero even number of edges of at least one color is $\left\lceil\log _{2} \chi(G)\right\rceil$. 1985 Academic Press, Inc

For a simple graph G, let $\varepsilon(G)$ denote the minimum number l for which there exists a partition of $E(G)$ into l subsets $E_{i}, 1 \leqslant i \leqslant l$, satisfying

$$
\begin{align*}
& \text { for any cycle } Z \text { of } G, 0<\left|E(Z) \cap E_{i}\right| \equiv 0 \quad(\bmod 2) \\
& \text { for at least one } E_{i} \text {. } \tag{1}
\end{align*}
$$

The number obtained by replacing the condition (1) by

$$
\begin{equation*}
\text { each }\left\langle E_{i}\right\rangle \text { is bipartite } \tag{2}
\end{equation*}
$$

is denoted by $\varepsilon^{\prime}(G)$. Acharya [1] conjectured that for any integer $n \geqslant 0$, $\varepsilon\left(K_{m}\right)=n$ for all values of m with $2^{n-1}+1 \leqslant m \leqslant 2^{n}$. In this note, we show

Proposition. If G is a graph with $2^{n-1}+1 \leqslant \chi(G) \leqslant 2^{n}$, then $\varepsilon(G)=\varepsilon^{\prime}(G)=n$, where $\chi(G)$ denotes the chromatic number of G.

Proof. Let $E(G)=\bigcup_{i=1}^{l} E_{i}$ be a partition satisfying (2), and let $V(G)=V_{i 1} \cup V_{i 2}$ be a bipartition of $\left\langle E_{i}\right\rangle$. Then the partition of $V(G)$ into the $V_{1 \lambda_{\mathrm{f}}} \cap \cdots \cap V_{l \lambda_{l}}$, where $\left(\lambda_{1}, \ldots, \lambda_{l}\right)$ ranges over $\{1,2\}^{\prime}$ yields a proper coloring. Thus $\varepsilon^{\prime}(G) \geqslant n$.

Now let $V(G)=U_{\lambda \in\{1,2\}^{n}} V_{\lambda}$ be a partition of $V(G)$ into independent subsets. Set

$$
\begin{aligned}
E_{i}= & \left\{e \in E(G) \mid e \text { joins vertices of } V_{\lambda} \text { and } V_{\mu}\right. \\
& \text { with } \left.i=\min \left\{k \mid p r_{k}(\lambda) \neq p r_{k}(\mu)\right\}\right\}, \quad 1 \leqslant i \leqslant n .
\end{aligned}
$$

Then for each cycle $Z, \quad 0<\left|E(Z) \cap E_{j(Z)}\right| \equiv 0 \quad(\bmod 2)$, where $j(Z)=\min \left\{i \mid E(Z) \cap E_{i} \neq \phi\right\}$. Thus $\varepsilon(G) \leqslant n$. Since it is clear that $\varepsilon(G) \geqslant \varepsilon^{\prime}(G)$, this proves the proposition.

Reference

1. B. D. Acharya, Even edge coloring of a graph, J. Combin. Theory Ser. B 35 (1983), 78-79.
